Current Publications

Expression of extraocular opsin genes and light-dependent basal activity of blind cavefish

Simon N, Fujita S, Porter M, Yoshizawa M

PeerJ. 2019 Dec 17

Animals living in well-lit environments utilize optical stimuli for detecting visual information, regulating the homeostatic pacemaker, and controlling patterns of body pigmentation. In contrast, many subterranean animal species without optical stimuli have evolved regressed binocular eyes and body pigmentation. Interestingly, some fossorial and cave-dwelling animals with regressed eyes still respond to light. These light-dependent responses may be simply evolutionary residuals or they may be adaptive, where negative phototaxis provides avoidance of predator-rich surface environments. However, the relationship between these non-ocular light responses and the underlying light-sensing Opsin proteins has not been fully elucidated.

Acidic pH promotes lipopolysaccharide modification and alters colonization in a bacteria-animal mutualism

Schwartzman JA, Lynch JB, Flores Ramos S, Zhou L, Apicella MA, Yew JY, Ruby EG

Mol Microbiol. 2019 Oct 11

Environmental pH can be an important cue for symbiotic bacteria as they colonize their eukaryotic hosts. Using the model mutualism between the marine bacterium Vibrio fischeri and the Hawaiian bobtail squid, we characterized the bacterial transcriptional response to acidic pH experienced during the shift from planktonic to host-associated lifestyles. We found several genes involved in outer membrane structure were differentially expressed based on pH, indicating alterations in membrane physiology as V. fischeri initiates its symbiotic program. Exposure to host-like pH increased the resistance of V. fischeri to the cationic antimicrobial peptide polymixin B, which resembles antibacterial molecules that are produced by the squid to select V. fischeri from the ocean microbiota. Using a forward genetic screen, we identified a homolog of eptA, a predicted phosphoethanolamine transferase, as critical for antimicrobial defense. We used MALDI-MS to verify eptA as an ethanolamine transferase for the lipid-A portion of V. fischeri lipopolysaccharide. We then used a DNA pulldown approach to discover that eptA transcription is activated by the global regulator H-NS. Finally, we revealed that eptA promotes successful squid colonization by V. fischeri, supporting its potential role in initiation of this highly specific symbiosis.

Carbon-carbon double bond position elucidation in fatty acids using ozone-coupled direct analysis in real time mass spectrometry

Cetraro N, Cody RB, Yew JY

Analyst. 2019 Oct 7

The carbon-carbon double bond positions of unsaturated fatty acids can have markedly different effects on biological function and also serve as biomarkers of disease pathology, dietary history, and species identity. As such, there is great interest in developing methods for the facile determination of double bond position for natural product chemistry, the pharmaceutical industry, and forensics. We paired ozonolysis with direct analysis in real time mass spectrometry (DART MS) to cleave and rapidly identify carbon-carbon double bond position in fatty acids, fatty alcohols, wax esters, and crude fatty acid extracts. In addition, ozone exposure time and DART ion source temperature were investigated to identify optimal conditions. Our results reveal that brief, offline exposure to ozone-generated aldehyde and carboxylate products that are indicative of carbon-carbon double bond position. The relative abundance of diagnostic fragments quantitatively reflects the ratios of isobaric fatty acid positional isomers in a mixture with a correlation coefficient of 0.99. Lastly, the unsaturation profile generated from unfractionated, fatty acid extracts can be used to differentiate insect species and populations. The ability to rapidly elucidate lipid double bond position by combining ozonolysis with DART MS will be useful for lipid structural elucidation, assessing isobaric purity, and potentially distinguishing between animals fed on different diets or belonging to different ecological populations.

Areca alkaloids measured from buccal cells using DART-MS serve as accurate biomarkers for areca nut chewing

Franke AA, Biggs L, Yew JY, Lai JF

Drug Test Anal. 2019 Jun 11

Areca nut (AN) chewing is carcinogenic and biomarkers reflecting it are urgently needed to determine the effectiveness of emergent cessation programs. Buccal cells (BCs) may serve as an ideal matrix to measure such biomarkers; however, their utility for this purpose is unknown. Direct analysis in real time-mass spectrometry (DART-MS) is a sensitive technique that analyzes materials in the open air and requires minimal/no sample preparation. We utilized DART-MS to analyze BCs to test the usefulness of this method in measuring areca alkaloids as biomarkers for AN chewing.

Pleiotropic Effects of ebony and tan on Pigmentation and Cuticular Hydrocarbon Composition in Drosophila melanogaster

Massey JH, Akiyama N, Bien T, Dreisewerd K, Wittkopp PJ, Yew JY, Takahashi A

Front Physiol. 2019 May 1

Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila.

Behavioral Tracking and Neuromast Imaging of Mexican Cavefish

Worsham M, Fernandes VFL, Settle A, Balaan C, Lactaoen K, Tuttle LJ, Iwashita M, Yoshizawa M

J Vis Exp. 2019 Apr 6

Cave-dwelling animals have evolved a series of morphological and behavioral traits to adapt to their perpetually dark and food-sparse environments. Among these traits, foraging behavior is one of the useful windows into functional advantages of behavioral trait evolution. Presented herein are updated methods for analyzing vibration attraction behavior (VAB: an adaptive foraging behavior) and imaging of associated mechanosensors of cave-adapted tetra, Astyanax mexicanus. In addition, methods are presented for high-throughput tracking of a series of additional cavefish behaviors including hyperactivity and sleep-loss. Cavefish also show asociality, repetitive behavior and higher anxiety. Therefore, cavefish serve as an animal model for evolved behaviors. These methods use free-software and custom-made scripts that can be applied to other types of behavior. These methods provide practical and cost-effective alternatives to commercially available tracking software.